
INTRODUCTION 
TO DEEP 

LEARNING

Natalie Parde
parde@uic.edu

CS 594: Language and Vision
Spring 2019

mailto:parde@uic.edu


What is deep 
learning?
■ A machine learning 

approach that automatically 
learns features directly from 
data, employing a neural 
network with one or more 
hidden layers to do so.

■ Often associated with end-
to-end learning

– Put raw input in one 
end

– Receive output from 
the other

© 2019 Natalie Parde



Deep learning isn’t new.

1943: First 
mathematical 

NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The 
perceptron is 

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 
Para. Cornell Aeronautical Laboratory.

1971: Implementation 
of feedforward 

network with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on 
Systems, Man, and Cybernetics, (4), 364-378.

1982: First 
convolutional 

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network 
model for a mechanism of visual pattern recognition. In Competition and cooperation in 
neural nets (pp. 267-285). Springer, Berlin, Heidelberg.

1982: First 
recurrent neural 

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558. © 2019 Natalie Parde



Why hasn’t it been a big 
deal until recently?
■ Data

■ Computing power

© 2019 Natalie Parde



Neural Networks

Input Output

© 2019 Natalie Parde



Types of Neural Networks
■ Feedforward Neural Network
■ Convolutional Neural Network

– LeNet
– ResNet

■ Recurrent Neural Network
– LSTM
– BiLSTM
– GRU

■ Generative Adversarial Network
■ Sequence-to-Sequence Network
■ Autoencoder

© 2019 Natalie Parde



Feedforward Neural Networks
■ Earliest and simplest form of neural network
■ Data is fed forward from one layer to the next
■ Each layer:

– One or more perceptrons
– A perceptron in layer n receives input from all 

perceptrons in layer n-1 and sends output to all 
perceptrons in layer n+1

– A perceptron in layer n does not communicate 
with any other perceptrons in layer n

■ The outputs of all perceptrons except for those in 
the last layer are hidden from external viewers

© 2019 Natalie Parde



What is a perceptron?

■ A function that outputs a binary value based on whether or not the product of its 
inputs and associated weights surpasses a threshold

■ Learns this threshold iteratively by trying to find the boundary that is best able to 
distinguish between data of different categories

x1

x2

b

w1

w2

w3

∑

© 2019 Natalie Parde



How do 
feedforward 

neural 
networks 

improve over 
time?

■ Backpropagation!

■ Weights in each neuron (neuron 
= individual perceptron) are 
updated after a training epoch 
finishes to minimize the error 
between their real and desired 
output

■ These updates begin at the 
output layer (where the error is 
known) and propagate backward 
through the network’s hidden 
layers until the first layer is 
reached

© 2019 Natalie Parde



What does this look like altogether?

Input Output

© 2019 Natalie Parde



Think, Pair, Share

■ Think of three shortcomings of standard 
feedforward neural networks, and one way 
that you might want to address each of those 
shortcomings, and write them on your 
notecard

■ Share those ideas with a partner

■ Choose one example to share with the class

■ Timer: 
https://www.google.com/search?q=timer

© 2019 Natalie Parde

https://www.google.com/search?q=timer


Convolutional Neural Networks
■ Feedforward neural network with one or more convolutional layers

– Sliding windows that perform matrix operations on subsets of the input

■ Designed to reflect the inner workings of the visual cortex system …perhaps 
unsurprisingly, CNNs are primarily used for computer vision tasks!

■ CNNs require that fewer parameters are learned relative to standard feedforward 
networks for equivalent input data

© 2019 Natalie Parde



Types of Layers in CNNs

Convolutional layer

•Computes products 
between the cells 
in a weight matrix 
and the original 
input matrix for a 
local region

Pooling layer

•Reduces the 
dimensionality of 
the input by 
pooling the 
products computed 
in the 
convolutional layer 
to a single value

Fully-connected layer

• Identical to that 
seen in standard 
feedforward neural 
networks

© 2019 Natalie Parde



Convolutional Layers
■ First layer(s): low-level features

– Color, gradient orientation
■ Higher layer(s): high-level features

– Car, train, plane
■ Layers can have varying numbers of filters, or feature maps

© 2019 Natalie Parde



Pooling Layers
■ Max Pooling

■ Average Pooling

© 2019 Natalie Parde



LeNet
■ First successful 

CNN1

■ 7 layers
– 3 convolutional
– 2 pooling
– 1 fully-

connected
– 1 softmax

output
■ 5x5 convolutions 

with stride size = 1
■ 2x2 average pooling

1LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning 
applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. © 2019 Natalie Parde



ResNet
■ Residual Network1

■ Unique characteristics:
– Residual connections
– No fully-connected layers at the end of the network

■ Opened the door to networks with hundreds or even 1000+ layers

Input Output

1He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). © 2019 Natalie Parde



What is a residual connection?
■ Rather than learning a full mapping (H(x)) from layer i to j, the model learns the 

difference (F(x)) between that mapping and the input to layer i
– More simply: What do we have to learn to get from x to H(x)?

Conv i Conv jx H(x)

Normal Connection

Conv i Conv jx F(x) + x

Residual Connection

© 2019 Natalie Parde



ResNet Architecture

■ Residual blocks:
– Two 3x3 convolutional layers

■ Periodically downsamples the data and doubles 
the number of feature maps in the convolutional 
layer

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for 
image recognition. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 770-778).© 2019 Natalie Parde



Recurrent Neural Networks

■ Neural network model designed specifically to handle sequential data

■ Particularly good for tasks like language modeling, image captioning, and other 
forms of predictive generation!

Artificial intelligence can learn to write like Shakespeare. Can you tell the difference?
- Australian Broadcasting Corporation

The world’s most prolific writer is a Chinese algorithm

- British Broadcasting Corporation

When an AI Goes Full Jack Kerouac

- The Atlantic

© 2019 Natalie Parde



How do RNNs differ from standard 
feedforward neural networks?
■ Memory!

– Loops in the network that allow information to persist over time

■ Information is stored between timesteps using an internal hidden state, and fed 
back into the model the next time it reads an input

– Some type of output is also predicted at each timestep

■ New hidden states are determined as a function of the existing hidden state and the 
new input at the current timestep

– This function remains the same across timesteps

© 2019 Natalie Parde



w3w2w1 Output Standard 
RNN

© 2019 Natalie Parde



Types of RNNs

LSTM BiLSTM GRU

© 2019 Natalie Parde



Long Short Term Memory 
Networks
■ Not one, but two hidden states persist through each timestep

– Hidden state
– Cell state

■ The new input and the current hidden state are multiplied with a 
weight matrix to produce four gates:

– Forget gate: Should we erase this information from the cell?
– Input gate: Should we write new information to the cell?
– Gate gate: How much should we write?
– Output gate: How much should we reveal as output?

■ The cell state is used to compute what information is in the new 
hidden state

© 2019 Natalie Parde



Long Short Term Memory Networks

w3w2w1 Output

Forget

Input

Output

Gate

© 2019 Natalie Parde



Bidirectional LSTMs

■ Basic idea: feed the input sequence to the LSTM model once from beginning to end, 
and once from end to beginning

■ This means you have hidden states associated with both past and future information 
at a given timestep

We saw her duck _____ We saw her duck _____ in the pond.

We saw her duck _____ the beam avoid hitting her head.

swimming

under

Standard LSTM Bidirectional LSTM

© 2019 Natalie Parde



Gated Recurrent Units
■ No cell state, but still has two gates

– Update: How much information from the past 
should be passed forward?

– Reset: How much information from the past 
should be thrown out?

■ Why use GRUs instead of LSTMs?
– Computational efficiency: Good for scenarios 

in which you need to train your model quickly 
and don’t have access to high-performance 
computing resources

■ Why use LSTMs instead of GRUs?
– Performance: LSTMs generally outperform 

GRUs at the same tasks

w3w2w1 Output

Update

Reset

© 2019 Natalie Parde



Other Neural Network 
Models
■ Generative Adversarial Networks (GANs)

■ Sequence to Sequence Networks (seq2seq)

■ Autoencoders

© 2019 Natalie Parde



Generative Adversarial Networks
■ Comprised of two neural networks that act as adversaries of one another

■ Generative model rather than discriminative
– Generative: Learn the probability distributions of features associated with classes
– Discriminative: Learn the boundary between classes

Neural 
NetworkFeatures Label

Discriminative Neural Network

Neural 
NetworkLabel Features

Generative Neural Network

What is the label, given what we know? How do we know that this is the label?

© 2019 Natalie Parde



Generative Adversarial Networks
■ Generator: “Inverse” convolutional 

neural network (upsamples
random noise into an image) that 
generates new training instances

– Goal is to generate fake 
instances that are passable 
enough that the discriminator 
doesn’t detect them

■ Discriminator: Standard
convolutional neural network that 
decides whether those instances 
are really part of the training 
dataset

– Goal is to discriminate 
between real instances and 
generated fake instances

Generator Discriminator

© 2019 Natalie Parde



Generative Adversarial Networks
In

pu
t D

at
a

Ra
nd

om
 N

oi
se

 V
ec

to
r

Discriminator

Generator
Fa

ke
 In

pu
t D

at
a

Predictions

© 2019 Natalie Parde



When should GANs be used?

■ Generally used in computer vision tasks
– Including text-to-image generation: 

https://github.com/zsdonghao/text-to-image

■ A few words of caution:
– Training can take a long time …you may want to 

avoid using GANs in time-sensitive projects
– Tuning is also often difficult
■ Sensitive to changes in hyperparameters
■ Generator can overpower discriminator, and vice versa

© 2019 Natalie Parde

https://github.com/zsdonghao/text-to-image


Sequence-to-Sequence Networks
■ Encoder-decoder models
■ Accept sequential information as input, and return different sequential information 

as output

■ Popular applications:
– Machine translation
– Question answering
– Summarization

Chicago is colder than 
Antarctica today. Encoder Decoder

Chicago est plus froid 
que l'Antarctique 
aujourd'hui.

© 2019 Natalie Parde



What are encoders and decoders?
■ In seq2seq models, encoders and decoders are typically LSTMs
■ Encoders take sequential input and generate an encoded representation of it, often 

referred to as a context
– The context is equivalent to the last hidden state of the encoder network
– Its features are indecipherable to us!

■ Decoders take a context as input and generate sequential (interpretable) output

Chicago is colder than 
Antarctica today. Encoder Decoder

Chicago est plus froid 
que l'Antarctique 
aujourd'hui.

© 2019 Natalie Parde



Seq2seq models often incorporate 
something called attention.

■ Attention allows a decoder model to focus on (or pay attention to) 
particularly relevant parts of an input sequence

■ In order to include attention in the seq2seq model, all hidden 
states must be passed to the decoder …not just the last one!

■ At a given timestep, the decoder assigns a score to each hidden
state in its input

■ It then determines the input context for the timestep based on 
which hidden state(s) have the highest score

© 2019 Natalie Parde



Decoder

Sequence-to-Sequence Model with 
Attention

Chicago is colder than 
Antarctica today.

Encoder

Chicago est plus froid 
que l'Antarctique 
aujourd'hui.

Ch
ic

ag
o

is

co
ld

er

th
an

An
ta

rc
tic

a

to
da

y

T1 T2 T3 T4 T5 T6 T7

H1

H2

H3

H4

H5

H6

H1 H2 H3 H4 H5 H6

© 2019 Natalie Parde



Autoencoders
■ Also encoder-decoder models
■ The main difference:

– Autoencoders learn in a self-supervised manner
■ They do this by learning to predict their own input!
■ This is a useful way to perform dimensionality reduction

– If a model’s lower-dimensional hidden layer is capable of reconstructing its own 
input, it has learned how to represent that input in a lower-dimensional space

Chicago is colder than 
Antarctica today. Encoder Decoder

Chicago is colder than 
Antarctica today.

© 2019 Natalie Parde



Variational Autoencoders
■ Instead of learning a fixed representation at the bottleneck of the autoencoder, variational 

autoencoders learn a probability distribution
– Bottleneck = the hidden layer that is output from the encoder and input to the decoder

■ The hidden layer is replaced by two vectors:
– One representing its mean
– One representing its standard deviation

■ The input to the decoder is then a sample of that probability distribution

■ This change makes it possible for the variational autoencoder to act as a generative model, predicting 
values that did not exist in its input!

Chicago is 
colder than 
Antarctica today.

Encoder Decoder
Chicago is 
colder than 
Antarctica today.

! SD

© 2019 Natalie Parde



Tool for 
Building 
Neural 

Networks

•https://www.tensorflow.org/TensorFlow

•https://keras.io/Keras

•https://pytorch.org/PyTorch

•https://deeplearning4j.org/DL4J

© 2019 Natalie Parde

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/


Additional Deep Learning 
Resources
■ Huge, curated list of deep learning books, courses, videos, tutorials, datasets, 

toolkits, etc.: https://github.com/ChristosChristofidis/awesome-deep-learning

■ Top conference proceedings to check out:
– Neural Information Processing Systems (NeurIPS): https://neurips.cc/
– International Conference on Machine Learning (ICML): https://icml.cc/
– International Conference on Learning Representations (ICLR): 

https://iclr.cc/
– AAAI Conference on Artificial Intelligence (AAAI): 

http://www.aaai.org/Conferences/conferences.php
– International Joint Conferences on Artificial Intelligence (IJCAI): 

https://www.ijcai.org/

■ Tips for debugging deep neural networks: http://josh-tobin.com/troubleshooting-
deep-neural-networks

© 2019 Natalie Parde

https://github.com/ChristosChristofidis/awesome-deep-learning
https://neurips.cc/
https://icml.cc/
https://iclr.cc/
http://www.aaai.org/Conferences/conferences.php
https://www.ijcai.org/
http://josh-tobin.com/troubleshooting-deep-neural-networks


Wrapping 
up….

■ Overview
■ Feedforward Neural Networks
■ Convolutional Neural Networks

– LeNet
– ResNet

■ Recurrent Neural Networks
– LSTMs
– BiLSTMs
– GRUs

■ Generative Adversarial Networks
■ Sequence-to-Sequence Networks
■ Autoencoders
■ Resources

© 2019 Natalie Parde


