INTRODUCTION TO DEEP LEARNING

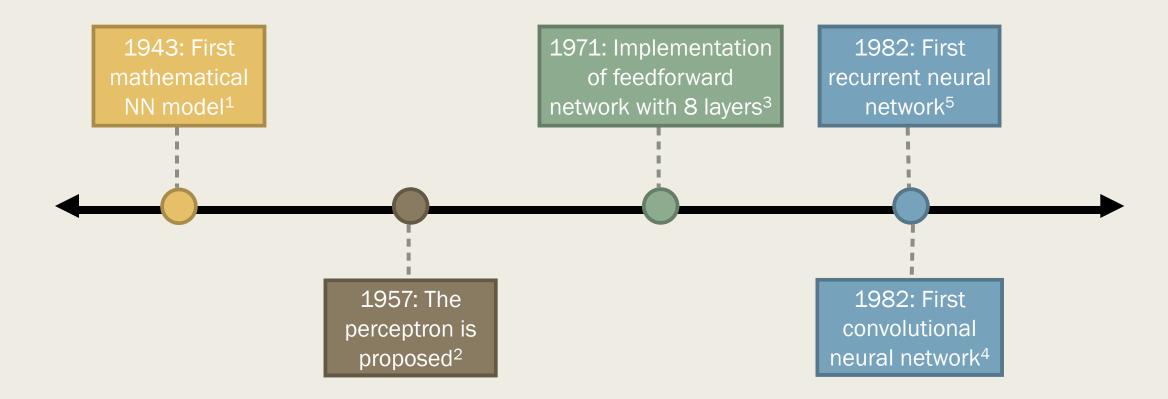
Natalie Parde parde@uic.edu

CS 594: Language and Vision Spring 2019

What is deep learning?

- A machine learning approach that automatically learns features directly from data, employing a neural network with one or more hidden layers to do so.
- Often associated with endto-end learning
 - Put raw input in one end
 - Receive output from the other

Deep learning isn't new.



¹McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous activity." *The bulletin of mathematical biophysics* 5.4 (1943): 115-133.

²Rosenblatt, F. (1957). *The perceptron, a perceiving and recognizing automaton Project Para*. Cornell Aeronautical Laboratory.

³Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. *IEEE transactions on Systems, Man, and Cybernetics*, (4), 364-378.

⁴Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In *Competition and cooperation in neural nets* (pp. 267-285). Springer, Berlin, Heidelberg.

⁵Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558. [©] 2019

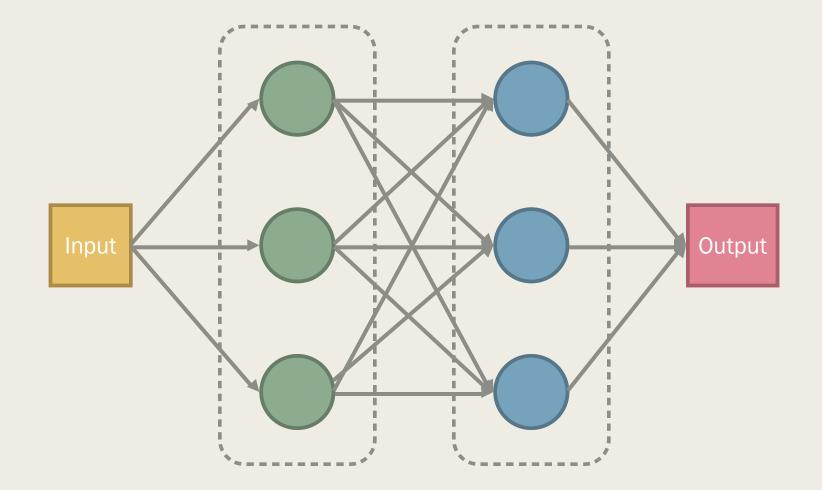
© 2019 Natalie Parde

Why hasn't it been a big deal until recently?

Data

Computing power

Neural Networks



Types of Neural Networks

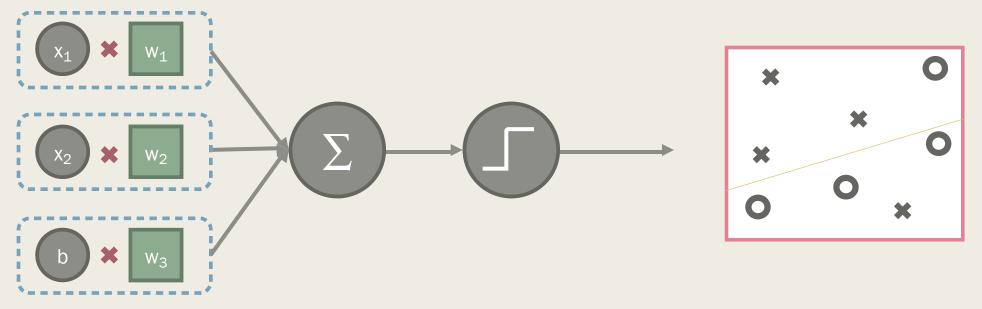
- Feedforward Neural Network
- Convolutional Neural Network
 - LeNet
 - ResNet
- Recurrent Neural Network
 - LSTM
 - BiLSTM
 - GRU
- Generative Adversarial Network
- Sequence-to-Sequence Network
- Autoencoder

Feedforward Neural Networks

- Earliest and simplest form of neural network
- Data is fed forward from one layer to the next
- Each layer:
 - One or more perceptrons
 - A perceptron in layer n receives input from all perceptrons in layer n-1 and sends output to all perceptrons in layer n+1
 - A perceptron in layer n does not communicate with any other perceptrons in layer n
- The outputs of all perceptrons except for those in the last layer are hidden from external viewers

What is a perceptron?

- A function that outputs a binary value based on whether or not the product of its inputs and associated weights surpasses a threshold
- Learns this threshold iteratively by trying to find the boundary that is best able to distinguish between data of different categories

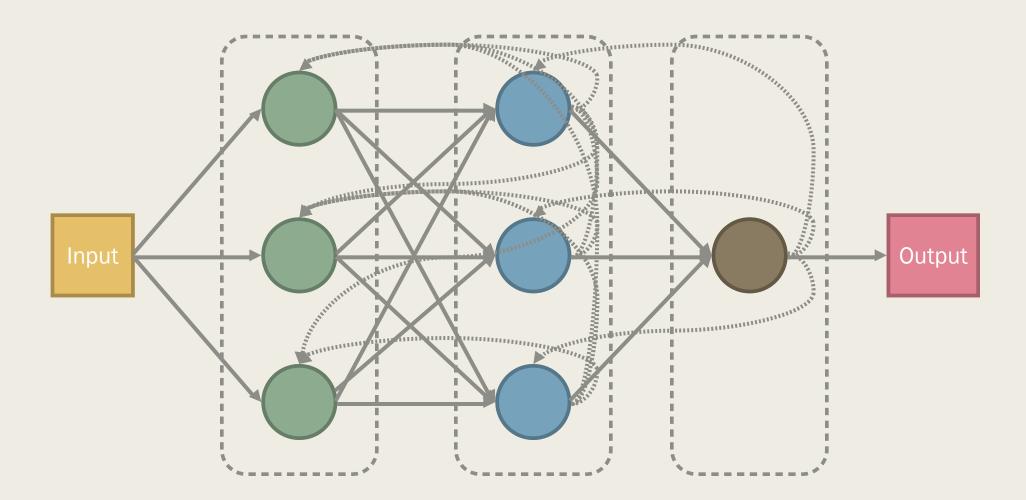


How do feedforward neural networks improve over time?

Backpropagation!

- Weights in each neuron (neuron = individual perceptron) are updated after a training epoch finishes to minimize the error between their real and desired output
- These updates begin at the output layer (where the error is known) and propagate backward through the network's hidden layers until the first layer is reached

What does this look like altogether?

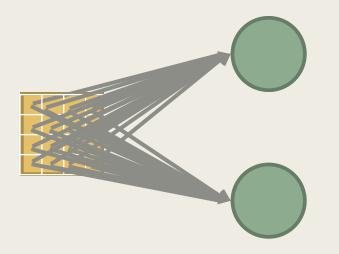


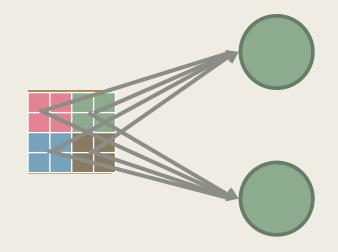
Think, Pair, Share

- Think of three shortcomings of standard feedforward neural networks, and one way that you might want to address each of those shortcomings, and write them on your notecard
- Share those ideas with a partner
- Choose one example to share with the class
- Timer: <u>https://www.google.com/search?q=timer</u>

Convolutional Neural Networks

- Feedforward neural network with one or more convolutional layers
 - Sliding windows that perform matrix operations on subsets of the input
- Designed to reflect the inner workings of the visual cortex system ...perhaps unsurprisingly, CNNs are primarily used for computer vision tasks!
- CNNs require that fewer parameters are learned relative to standard feedforward networks for equivalent input data





Types of Layers in CNNs

Convolutional layer

 Computes products between the cells in a weight matrix and the original input matrix for a local region

Pooling layer

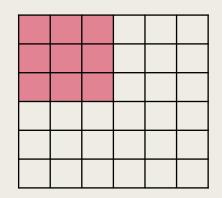
 Reduces the dimensionality of the input by pooling the products computed in the convolutional layer to a single value

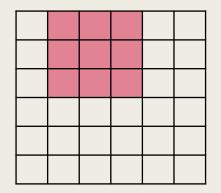
Fully-connected layer

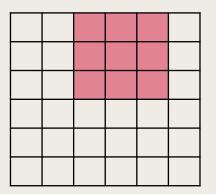
 Identical to that seen in standard feedforward neural networks

Convolutional Layers

- First layer(s): low-level features
 - Color, gradient orientation
- Higher layer(s): high-level features
 - Car, train, plane
- Layers can have varying numbers of filters, or **feature maps**

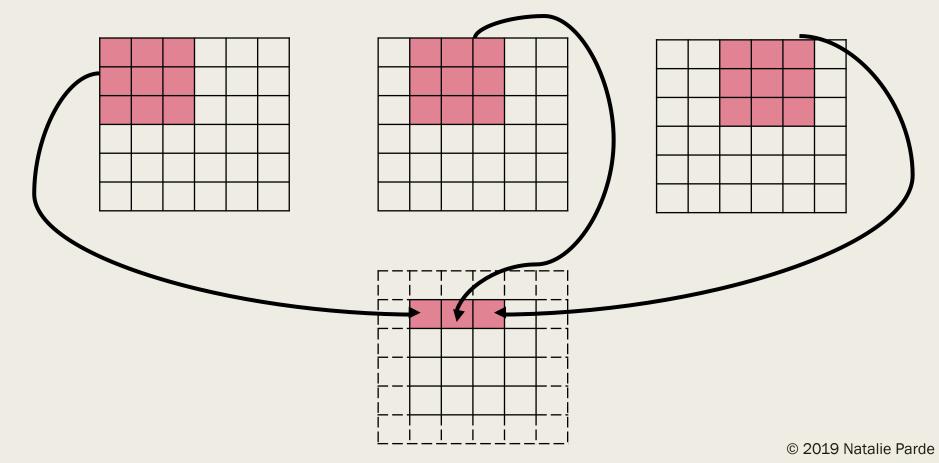






Pooling Layers

- Max Pooling
- Average Pooling



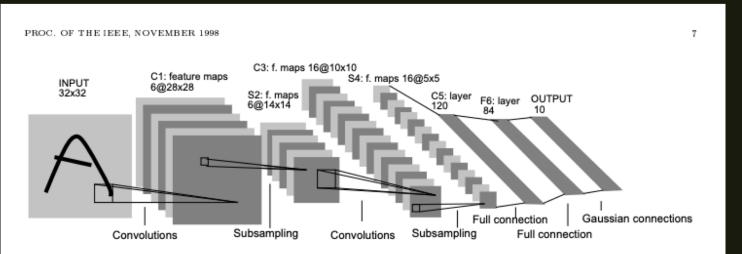


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

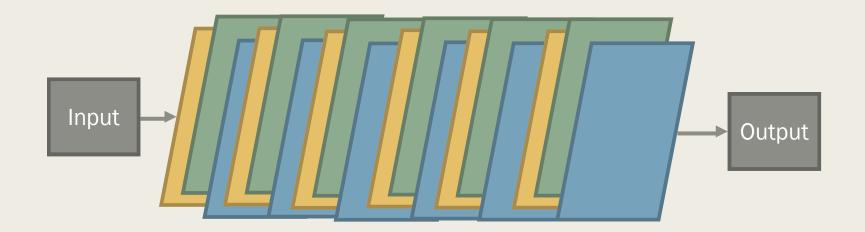
¹LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278-2324.

LeNet

- First successful CNN¹
- 7 layers
 - 3 convolutional
 - 2 pooling
 - 1 fullyconnected
 - 1 softmax output
- 5x5 convolutions
 with stride size = 1
- 2x2 average pooling

ResNet

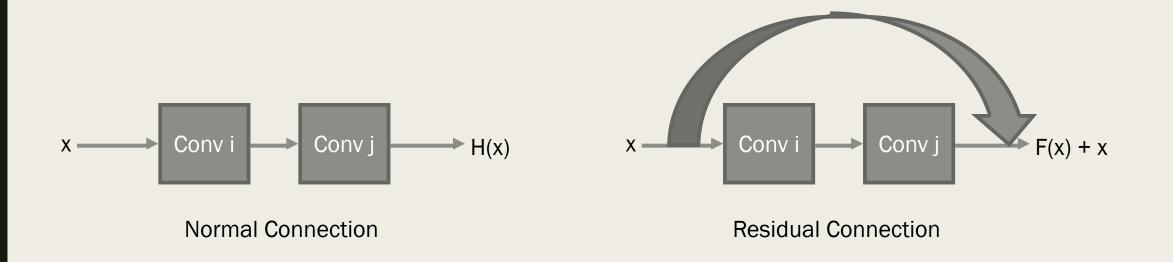
- Residual Network¹
- Unique characteristics:
 - Residual connections
 - No fully-connected layers at the end of the network
- Opened the door to networks with hundreds or even 1000+ layers



¹He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

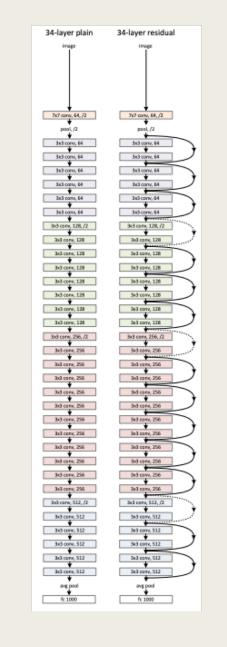
What is a residual connection?

- Rather than learning a full mapping (H(x)) from layer *i* to *j*, the model learns the difference (F(x)) between that mapping and the input to layer *i*
 - More simply: What do we have to learn to get from x to H(x)?



ResNet Architecture

- Residual blocks:
 - Two 3x3 convolutional layers
- Periodically downsamples the data and doubles the number of feature maps in the convolutional layer



He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

Recurrent Neural Networks

- Neural network model designed specifically to handle sequential data
- Particularly good for tasks like language modeling, image captioning, and other forms of predictive generation!

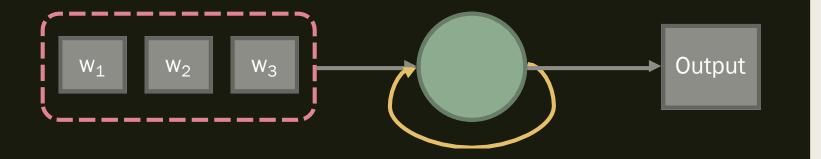
Artificial intelligence can learn to write like Shakespeare. Can you tell the difference? - Australian Broadcasting Corporation

The world's most prolific writer is a Chinese algorithm

When an AI Goes Full Jack Kerouac - The Atlantic

How do RNNs differ from standard feedforward neural networks?

- Memory!
 - Loops in the network that allow information to persist over time
- Information is stored between timesteps using an internal hidden state, and fed back into the model the next time it reads an input
 - Some type of output is also predicted at each timestep
- New hidden states are determined as a function of the existing hidden state and the new input at the current timestep
 - This function remains the same across timesteps



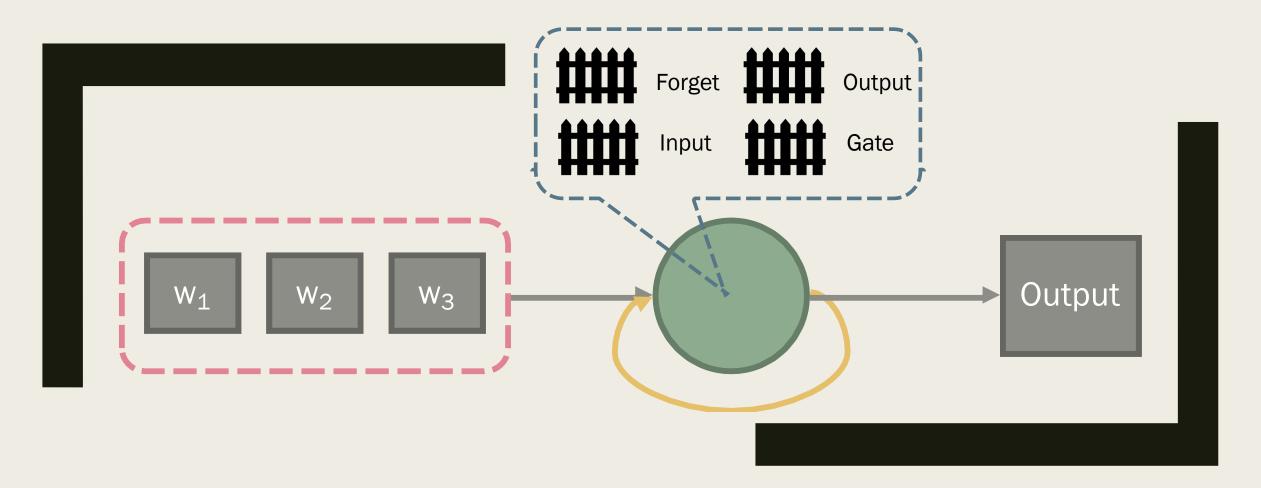
Standard RNN

Types of RNNs

© 2019 Natalie Parde

Long Short Term Memory Networks

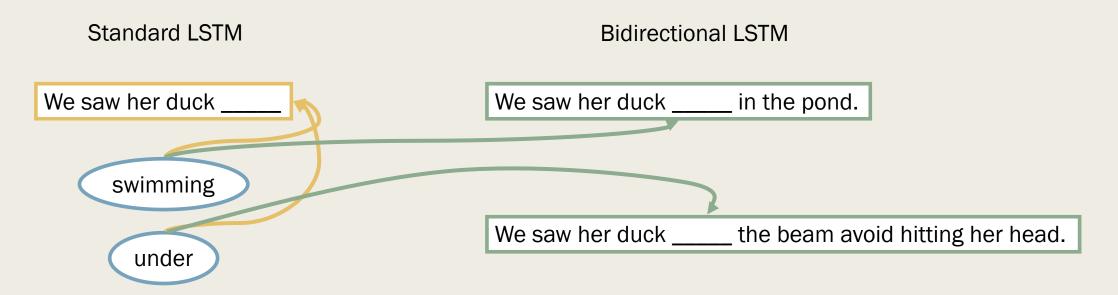
- Not one, but **two** hidden states persist through each timestep
 - Hidden state
 - Cell state
- The new input and the current hidden state are multiplied with a weight matrix to produce four gates:
 - Forget gate: Should we erase this information from the cell?
 - Input gate: Should we write new information to the cell?
 - Gate gate: How much should we write?
 - Output gate: How much should we reveal as output?
- The cell state is used to compute what information is in the new hidden state



Long Short Term Memory Networks

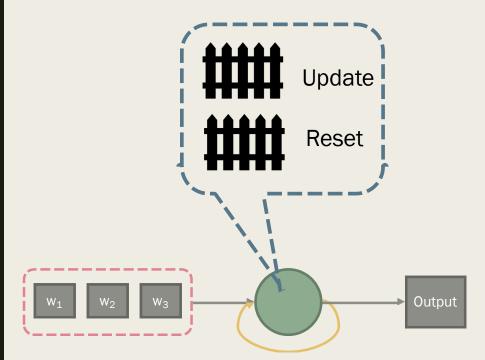
Bidirectional LSTMs

- Basic idea: feed the input sequence to the LSTM model once from beginning to end, and once from end to beginning
- This means you have hidden states associated with both past and future information at a given timestep



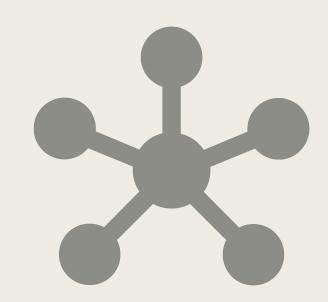
Gated Recurrent Units

- No cell state, but still has two gates
 - Update: How much information from the past should be passed forward?
 - Reset: How much information from the past should be thrown out?
- Why use GRUs instead of LSTMs?
 - Computational efficiency: Good for scenarios in which you need to train your model quickly and don't have access to high-performance computing resources
- Why use LSTMs instead of GRUs?
 - Performance: LSTMs generally outperform GRUs at the same tasks



Other Neural Network Models

- Generative Adversarial Networks (GANs)
- Sequence to Sequence Networks (seq2seq)
- Autoencoders



Generative Adversarial Networks

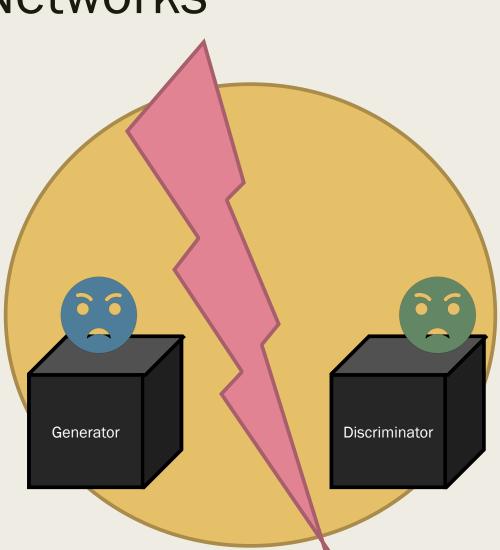
- Comprised of two neural networks that act as adversaries of one another
- Generative model rather than discriminative
 - Generative: Learn the probability distributions of features associated with classes
 - Discriminative: Learn the boundary between classes

What is the label, given what we know?

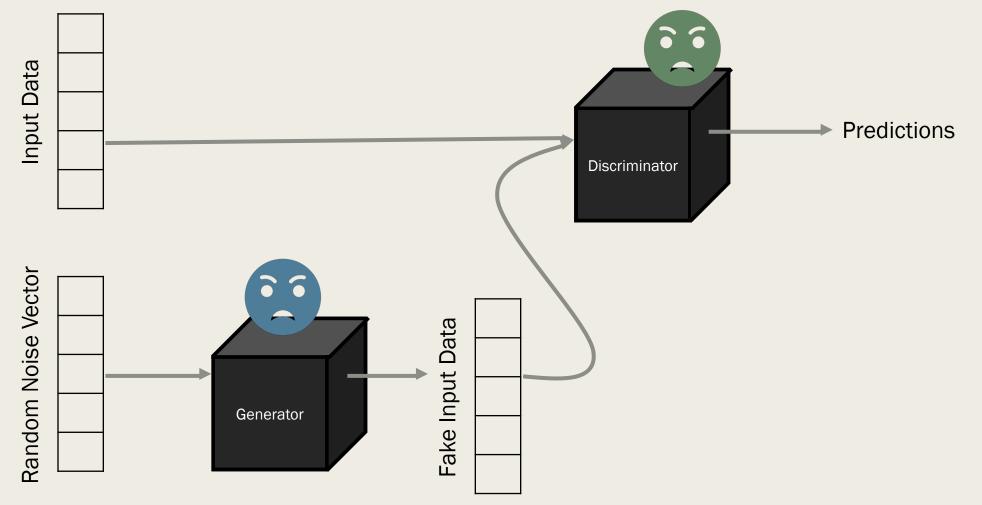
How do we know that this is the label?

Generative Adversarial Networks

- Generator: "Inverse" convolutional neural network (upsamples random noise into an image) that generates new training instances
 - Goal is to generate fake instances that are passable enough that the discriminator doesn't detect them
- Discriminator: Standard convolutional neural network that decides whether those instances are really part of the training dataset
 - Goal is to discriminate between real instances and generated fake instances



Generative Adversarial Networks



When should GANs be used?

Generally used in computer vision tasks

 Including text-to-image generation: <u>https://github.com/zsdonghao/text-to-image</u>

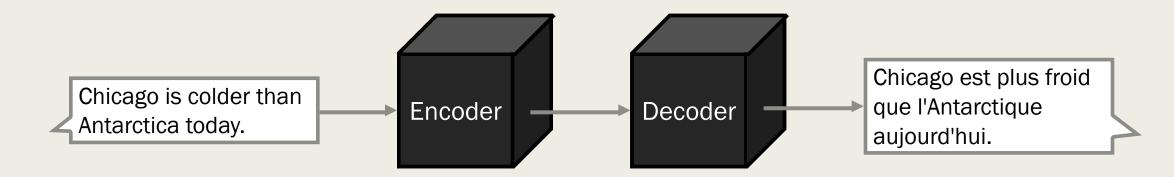
• A few words of caution:

- Training can take a long time ...you may want to avoid using GANs in time-sensitive projects
- Tuning is also often difficult
 - Sensitive to changes in hyperparameters
 - Generator can overpower discriminator, and vice versa

Sequence-to-Sequence Networks

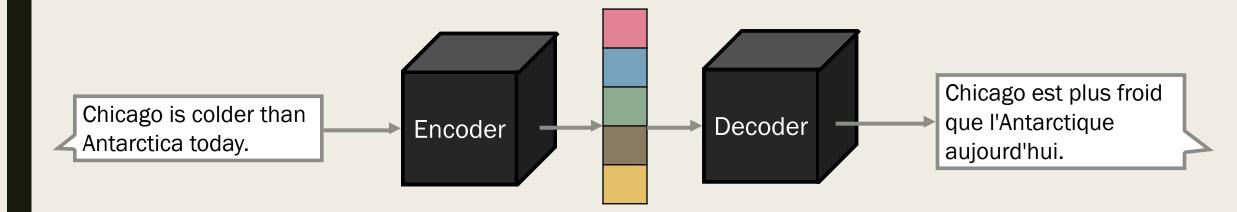
Encoder-decoder models

- Accept sequential information as input, and return different sequential information as output
- Popular applications:
 - Machine translation
 - Question answering
 - Summarization



What are encoders and decoders?

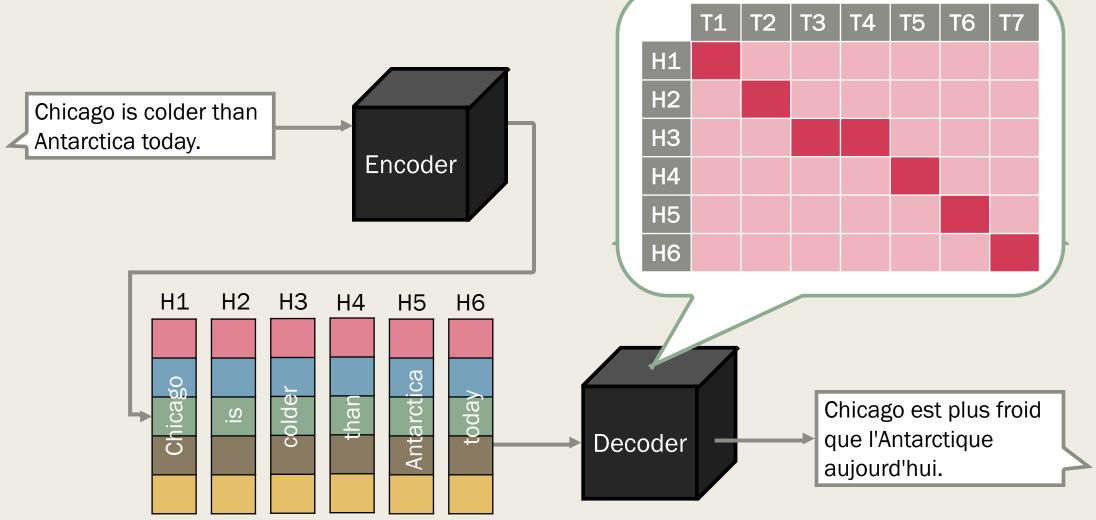
- In seq2seq models, encoders and decoders are typically LSTMs
- Encoders take sequential input and generate an encoded representation of it, often referred to as a context
 - The context is equivalent to the last hidden state of the encoder network
 - Its features are indecipherable to us!
- Decoders take a context as input and generate sequential (interpretable) output



Seq2seq models often incorporate something called **attention**.

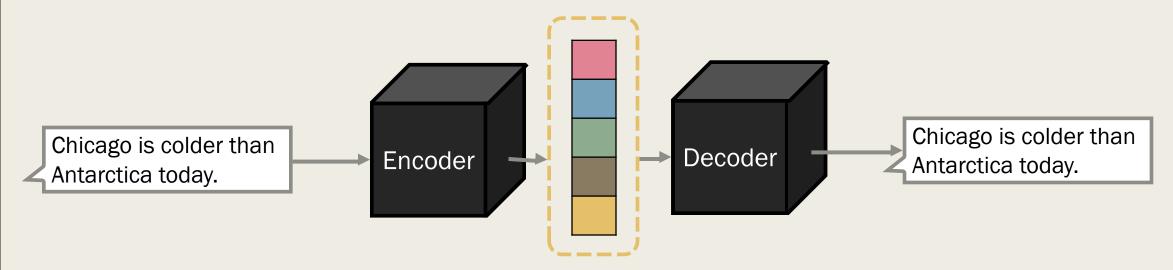
- Attention allows a decoder model to focus on (or pay attention to) particularly relevant parts of an input sequence
- In order to include attention in the seq2seq model, all hidden states must be passed to the decoder ...not just the last one!
- At a given timestep, the decoder assigns a score to each hidden state in its input
- It then determines the input context for the timestep based on which hidden state(s) have the highest score

Sequence-to-Sequence Model with Attention



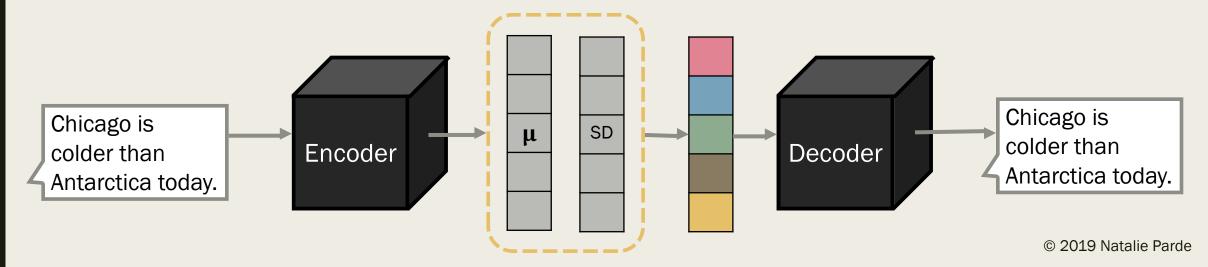
Autoencoders

- Also encoder-decoder models
- The main difference:
 - Autoencoders learn in a self-supervised manner
- They do this by learning to predict their own input!
- This is a useful way to perform dimensionality reduction
 - If a model's lower-dimensional hidden layer is capable of reconstructing its own input, it has learned how to represent that input in a lower-dimensional space



Variational Autoencoders

- Instead of learning a fixed representation at the **bottleneck** of the autoencoder, variational autoencoders learn a probability distribution
 - Bottleneck = the hidden layer that is output from the encoder and input to the decoder
- The hidden layer is replaced by two vectors:
 - One representing its mean
 - One representing its standard deviation
- The input to the decoder is then a **sample** of that probability distribution
- This change makes it possible for the variational autoencoder to act as a generative model, predicting values that did not exist in its input!



Tool for Building Neural Networks

TensorFlow	• <u>https://www.tensorflow.org/</u>
Keras	• <u>https://keras.io/</u>
PyTorch	• <u>https://pytorch.org/</u>
DL4J	 <u>https://deeplearning4j.org/</u>

Additional Deep Learning Resources

- Huge, curated list of deep learning books, courses, videos, tutorials, datasets, toolkits, etc.: <u>https://github.com/ChristosChristofidis/awesome-deep-learning</u>
- Top conference proceedings to check out:
 - Neural Information Processing Systems (NeurIPS): <u>https://neurips.cc/</u>
 - International Conference on Machine Learning (ICML): <u>https://icml.cc/</u>
 - International Conference on Learning Representations (ICLR): <u>https://iclr.cc/</u>
 - AAAI Conference on Artificial Intelligence (AAAI): <u>http://www.aaai.org/Conferences/conferences.php</u>
 - International Joint Conferences on Artificial Intelligence (IJCAI): <u>https://www.ijcai.org/</u>
- Tips for debugging deep neural networks: <u>http://josh-tobin.com/troubleshooting-deep-neural-networks</u>

Wrapping up....

Overview

- Feedforward Neural Networks
- Convolutional Neural Networks
 - LeNet
 - ResNet
- Recurrent Neural Networks
 - LSTMs
 - BiLSTMs
 - GRUs
- Generative Adversarial Networks
- Sequence-to-Sequence Networks
- Autoencoders
- Resources